Performance Testing of High Efficient PV Modules using Single 10 ms Flash Pulses

Authors:
Ferretti, Nicoletta; Pelet, Yanik; Berghold, Juliane; Fakhfouri, Vahid; Grunow, Paul

Abstract/Summary:
The performance at STC of highly efficient and highly capacitive modules cannot be correctly measured within one 10 ms flash by applying to the module terminals a standard voltage ramp. Measurement artifacts due to the module capacitance could lead to an underestimation of the module maximal power. The measurement of a steady-state-like I-V curve of high capacitive modules requires longer sweep-times which are not reachable within one single flash. Accordingly, the DragonBack® method was investigated at PI Berlin, which allows for steady-state-like I-V curve measurements within one 10 ms flash by applying a customized voltage profile to the module. In this work the suitability of the DragonBack® method for power determination of high efficiency modules is investigated by comparing measurements performed both with this method and with the multi flash mode.

For more Information on the topic please contact the R&D Team of PI Berlin.

Paper available at:
www.eupvsec-proceedings.com

Poster:
NextPage

DOI:
10.4229/28thEUPVSEC2013-4AV.5.4
PERFORMANCE TESTING OF HIGH EFFICIENT PV MODULES USING SINGLE 10 MS FLASH PULSES

Nicoletta Ferretti1, Yanik Pelet1, Juliane Berghold1, Vaheid Fakhfouri2, Paul Grunow1
1) PI Berlin, Wangelstr. 100, 10997 Berlin, Germany
2) PASAN SA Rue Jaquet-Droz 8, Neuchatel, 2000, Switzerland
Phone: +49 (30) 814 52 64 119, Fax: +49 (30) 814 52 64 101, e-mail: ferretti@pi-berlin.com

Introduction & Approach

High efficiency solar modules are often characterized by an increased capacitance. By measuring the I-V curve with the flash light solar simulator, capacitance effects may cause an increased or reduced maximum power. These measurement artifacts can be avoided by using subsequent flashes.

Pasan SA developed a method named DragonBack® (DB) which allows for measuring the I-V curve of high capacitive modules within 10 ms flash pulse without having any measurements artifacts. This method consists in the application to the terminals of the module of a customized voltage profile. In this work the robustness and suitability of the DragonBack® method is tested on several high efficiency modules by comparing the resulting maximum power with the one obtained by the multi flash technique.

DragonBack® impulse voltage

Aim of DB method: measurement of plateaus within one flash with stable I and V signals where each plateau represents one point of the I-V curve.

Before the determination of the DragonBack® voltage profile, the module is measured in direct and reverse mode for the evaluation of its capacitance. Considering the measured capacitance and adjusting few other parameters, the DragonBack® impulse voltage curve can be generated (Fig. 7).

Results

For each producer a module is considered as reference.

The performance of each module is tested by:
• Single flash (10 ms)
• Multi Flash (Sectional or Steady)
• Dragon Back voltage profile defined for the tested module (DB)
• Dragon back voltage profile defined for the reference module (DBref)

For each producer a module is considered as reference.

DB vs MF

A total of 27 high capacitive modules of 7 different producers were measured both with DragonBack® and with multi flash methods. By comparing the DragonBack® measurements performed with the impulse voltage customized for the module under test, with the multi flash measurements, it results a deviation on the maximum power always smaller than 0.5%. Considering that the values are not temperature corrected and that the temperature coefficients for the maximum power exceed 0.3%/K, this result can be considered acceptable.

For each producer a reference module was selected and with the impulse voltage curve determined for this module, the I-V curve of other modules of the same type was measured. For 16 modules the maximum power deviation with respect to the multi flash results does not exceed 0.3%, for 2 modules is smaller than 0.5%.

This statistic validates the robustness of the DragonBack® method for the measurement of a batch of high efficiency modules.