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Abstract/Summary:

The encapsulation method of crystalline silicon modules plays an important role in the mi-
tigation of potential induced degradation (PID) on module level. The focus on this work is to
identify possibilities of mitigating PID for selective emitter cell technologies by the means of
new module designs without the necessity of cell level modifications. In this paper we present
different frontcover and encapsulation materials, which have been tested in different module
layouts. We predominantly examined innovative laminate configurations allowing for higher
transmission rates in the UV range and thus increasing short circuit currents (1SC) of selective
emitter cells. We examined these performance (PMPP) enhancements consisting in higher
optical transmission in relation to its resistance against PID. As a result of this assessment we
show new module designs, which are both capable to improve module efficiencies while avoi-
ding PID effects. Furthermore, different EVAs have been tested regarding their PID.
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Fig. 5: Comparison of glass-PVB-glass
sample transmission before and after a
dose of 46kWh UV irradiation.

Fig. 6: Comparison of glass-TPSE-glass
sample transmission before and after a
dose of 46kWh UV irradiation.

PID resistivity of various materials

Tab. 2: Relative power degradation due to voltage stress of
-50V against ground on different encapsulate materials.

Fig. 7: Comparison of glass-lonomer-glass
sample transmission before and after a
dose of 46kWh UV irradiation.

Fig. 8: Comparison of glass-PDMS-glass
sample transmission before and after a
dose of 46kWh UV irradiation.

- Conclusion

PID behaviour of different EVA types

Tab. 3: Overview of four different EVA samples and
their average power before and after 24 hours of PID

treatment.
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